聚丙烯酰胺PAM和聚合氯化铝PAC配合使用的混凝效果怎么样?
聚丙烯酰胺PAM和聚合氯化铝PAC配合使用的混凝效果怎么样?
在对于聚丙烯酰胺与聚合氯化铝混凝污水处理,河南翔龙环保有限公司为广大用户做一个大致介绍。今天翔龙环保就来详细看看,对于废水处理中聚丙烯酰胺与聚合氯化铝混凝污水处理有哪些缺点同时又有哪些优点。
目前对该组合的优点已经讨论了不少,在某些工业废水处理中确实起到了较好的混凝作用,但是海韵想说的是该组合的缺点,供大家参考:
(1)在处理某些废水时,由于PAC本身固有的矾花小、沉淀慢等不足,使得该药剂必须配合PAM这种副环境效应(二次污染)很大的有机高分子化学品(还有PAC本身在水中和污泥中残留铝的二次污染)。这使得这种结合从环境效应方面来说,一开始就注定了它不是的发展方向。
(2)“PAC+PAM组合”虽然在许多情况下表现出了较好的混凝效果,但是大家是否关注过由此而产生的污泥的含水率?可能许多厂家根本就不进行污泥脱水,而是偷偷的将污泥又排了。这种污泥的含水率较高,在污泥浓缩罐中很难将含水率降为97%左右,这给后续的污泥脱水带来极大的不便,甚至根本无法脱水(明显的实例就是广东省东莞漳村260万吨/日运河水处理中的“PAC+PAM组合”)。
(3)“PAC+PAM组合”这种药剂的大量使用,将使PAM(降解产物丙烯酰胺)这种具有强致癌性的物质在环境中不断增加,如果我们只是一味的大量使用这种组合药剂,那么大家是否想到了“在我们净化工业废水的同时,却又使在环境中致癌物快速增加”这一问题?在当今强化环保意识和提高生存质量的前提下,我们这样做安全吗?
(4)更有甚者是,我们国家东北地区的某些自来水厂也将“PAC+PAM组合”拿来使用。在提高饮水水质、保障人体健康的今天,这样做合适吗?
其实,除“PAC+PAM组合”外,还有不少解决问题的途径。遗憾的是,我们的许多搞水处理的同志,对混凝技术和实践的认识尚待提高。虽然说“混凝”在给排水处理中占有非常重要的地位,但是在我们现有的大学和研究生的课程中,却很少讲“混凝”(对于混凝技术等研究方向除外),在具体的水处理工作中又对混凝认识不深。这就导致我们中的一些人把“PAC+PAM组合”看作了梦幻组合(但愿不要做梦迷失了方向)。更重要的事情是,在加药方式上、在混凝反应池的设计上,在混凝工艺与混凝技术上、在新药剂研究开发上、在新药组合上,我们应该去真正的做些什么?
PAM是目前使用为广泛的人工合成有机高分子混凝剂,其聚合度可达到20000到90000,相应分子量可达到150万到2300万,它的混凝效果在于对胶体表面具有强烈的吸附作用,在胶粒之间形成桥联。但它有一定的毒性,主要在于单体丙烯酰胺,故产品中的单体残留量应该有严格的控制,一般不得超过0.2%。对于具体的投加量,则应该根据实际情况而定。
液体絮凝剂,比如PAC的浓度,用质量比5%、10%来表示的。一般的液体药剂,投加量在5%-20%范围。
自来水原水处理中“PAC+PAM组合”的利与弊
谈到自来水原水的混凝处理中的“PAC+PAM组合”。从饮用水的安全和人体健康的角度来说,在自来水处理中无论如何是不应当用“PAC+PAM组合”的,即使是在所谓的“特殊”情况下。因为现代混凝技术的发展,已经*可以在不采用“PAC+PAM组合”的情况下,而使自来水原水处理的更好。至于少数自来水厂为什么在“特殊”情况下去采用“PAC+PAM组合”而不顾饮用水的安全性和人体的健康权,那可能要问问那些决策者们了。
我们不能因为PAM用量“极少”,或“基本”不对饮水安全造成危害,而采用它。用一个简单的例子来说明问题吧:“苏丹红-I号”这种东西具有致癌性,商家在经济利益的趋势下,不顾人体的安全和健康而在一些食品添加剂中进行“少量”的添加。当我们广大消费者尚被蒙在鼓里的时候,我们不知其害,但当我们了解其害时,你还去吃这些添加有“苏丹红”的食品吗?所以国家要严查“苏丹红”
现有的自来水原水的混凝净化处理,所用混凝剂基本是:聚合氯化铝、聚合硫酸铁、硫酸铝,其中以聚合氯化铝为主。20世纪聚合氯化铝问世以来,确实因为其高效优良的特性,而在多种水处理中备受关注和采用,遗憾的是,象其它混凝剂一样,聚合氯化铝并不是“一方治百病”。
我国地域广阔、水质变化大、冬夏水温差大,且各水司间的混凝单元工艺有别、水力负荷不同,还有运行管理水平参差不齐,等等。所有这些,都是造成了聚合氯化铝(或聚合硫酸铁、硫酸铝等混凝剂)会出现这样那样的缺陷和问题的原因。问题的解决,应当根据混凝技术理论、应用实践经验,并再结合当前新型混凝剂的研究发展,去进行解决。不能将PAM等一加了之,这是不负责任的。在饮用水处理中,希望那些惯用PAM来解决问题的决策者们,好好思量。
聚合氯化铝在使用过程中,不仅仅是在北方的冬季才出问题的,在南方,例如珠江三角地区,即使是在夏季,也有沉淀不*、“跑矾”等问题,给后续处理中的滤池增加了不少负担,从而消耗了电力和大量的反冲洗水。当然,这些问题在北方的冬季尤为突出,所以在不得已的情况下,添加了“极少”的PAM。
对上述问题,如何去找到解决方案呢?90年代初加拿大汉迪化学品公司开发了聚合硅酸硫酸铝(PASS),在北美地区得到了认可和推广,并在我国也申请了(听说也建立了工厂)。遗憾是,直至目前未见其在中国市场上的推广应用。究其原因是,这种PASS并不太适合我国的水情和国情,其中价格和性能是主要原因。只得值得庆幸的是,中国的学者们在PASS的启发下,于20世纪90年代中开始,研究开发了“类PASS”的产品,在性能价格上不仅比PASS*,同时也比聚合氯化铝等常用混凝剂*,尤其在低温低浊下,其优良的混凝性能不减。我国许多学者在这方面进行大量的基础和应用研究,并于90年代下半叶或末,将这种新产品开始进行推广。
我们在这方面也进行深入了基础理论、应用性能研究,并于2000年将工业化试生产和应用等通过了省科技厅成果鉴定。这就是新型无机高分子多元共聚型混凝剂MY-X系列(含MY-1、MY-2、MY-3)。
但是,多元共聚型净水剂MY-X也不是“一方治百病”的,在处理高浊度水和常温下水力负荷比较低的时,其性能价格比不一定好于聚合氯化铝和聚合硫酸铁等。这种新型混凝剂的大的特色就是对“低温低浊水”和“含油废水”等,可以始终保持优良的混凝沉降性能。
PASS相关论述
(1)PASS是一种碱式聚硅酸硫酸铝,具有一定了盐基度,实际上是加入了活性二氧化硅的聚合硫酸铝。这种PASS由加拿大人发明。该PASS混凝剂比硫酸铝的性能在低温低浊条件下*,但是与我国的聚合氯化铝铁类混凝剂相比,其效果平平,因此在中国的市场上未被认可。
(2)类PASS是在“PASS”的基础上,我国学者在生产工艺和原料等方面进行了较大的改进,是以活性硅酸、铝盐、铁盐等为主要原料,在一定条件下经过多元共聚而形成的新型高效无机高分子混凝剂。该类混凝剂非常适用于处理低温低浊水,此时仅用该类混凝剂,就可以达到非常理想的混凝沉降和净水效果,而若采用聚合氯化铝或聚合硫酸铁则很难达到良好效果,往往需要配合PAM共用。类PASS的经济性和实用性当然很好,在我们开发的多种新型混凝剂中,多元共聚型净水剂MY-1、MY-2就是属于“类PASS”的新产品或新技术。
(3)你提到的“(PAC+HCA)的组合”中的HAC,不知是那种药剂的英文缩写?
(4)对于“低温低浊水”,当然使用“PAM+PAC组合”可以达到较好处理效果,只是水质的安全性受到了影响。若不用PAM,PAC等又难以沉降,往往出现大量的“跑矾”现象,即矾花从沉淀池中随水流出的一种现象,大大增大了滤池的负担,这是不可取的。
(1)聚二甲基二烯丙基氯化胺的英文缩写应该是“PDMDAAC”,而不是HCA。
(2)由于单体“二甲基二烯丙基氯化胺”价格较贵,导致PDMDAAC成本较高,目前还仅有液体产品,作为阳离子型的有机高分子絮凝剂,由于其分子量远低于PAM,因此其性价比较低。
(3)PDMDAAC的优点在于:该絮凝剂的毒性及其及其降解产物的毒性远低于PAM和AM,因此有较好的环境效应。
(4)多元共聚净水剂MY-1、MY-2是液体产品,可用污水处理中,比如用在含油废水处理和造纸废水处理时,混凝效果很好,且可以在不使用PAM高分子絮凝剂的情况下,仍然油很好的混凝沉降效果。
PAM的离子性是其内部电荷对外的表现不同,阴离子是羧基,阳离子是叔氨基、季氨基等。离子度就是可电离成分占有的比例。选用PAM的标准是适用性和经济性为原则。从技术角度就是离子性、离子含量、分子量等指标。作为助凝剂时候,絮凝作用大于电性影响,虽然是同性相斥,但仍然可以实现絮凝分离的目的,这时候,使用费用 差异就表现很明显了。